вторник, 23 июня 2020 г.

Мый позьӧ артмӧдны Фудзиталӧн медводдза вит аксиомаӧн вӧдитчӧмӧн – 2

  • куимпельӧса – треугольник
  • вундӧг – отрезок
  • кытшвизь – окружность
  • судта – высота

Позьӧ-ӧ медводдза вит аксиома кежысь артмӧдны индӧм a, b да c доръяса куимпельӧса? Вӧлӧмкӧ, позьӧ.

Медводз со мый пасъям. Шуам, a – куимпельӧсалӧн медыджыд дорыс. Сэки сы бердса кыкнан пельӧсыс ёсьӧсь. Куимпельӧсаын a дорланьыс нуӧдӧм судтаыс юклӧ тайӧ дорсӧ x да ax кузьта вундӧгъяс вылӧ.


Артмӧдам x кузьта вундӧгсӧ. Пифагор теоремаысь позьӧ петкӧдны: x = a/2 + b2/2ac2/2a. Медводдза нёль аксиоманас вӧдитчӧмӧн позьӧ содтавны, чинтавны да шӧри юклавны вундӧгъяссӧ. Сідзкӧ, миянлы колис лӧсьӧдны b2/a да c2/a кузьта вундӧгъяс.

Мед y = b2/a. Сэки y : b = b : a, либӧ a : b = b : y; пропорциялы вундӧг корсьны ми кужам нин да, y-сӧ артмӧдам. Сэтшӧм жӧ ногӧн c2/a кузьта вундӧг вӧчам.

Сідзкӧ, сетӧма a, b да c вундӧгъяс. Медводз b-лысь помсӧ a-лӧн помӧ пуктам (2-ӧд аксиомаӧн вӧдитчӧмӧн). Сэсся лӧсьӧдам x вундӧгсӧ да пуктам сійӧс a вундӧг вылӧ, кыдзи серпасас петкӧдлӧма.


Артмӧм D чут пыр a визьлы h перпендикуляр нуӧдам (4-ӧд аксиома серти). Сы бӧрын кабаласӧ кусыньтам сідзи, медым E чут h визьӧ веськаліс да кусыньтанін B чут пыр муніс (5-ӧд аксиома серти).


C да F чутъяс пыр веськыд визь нуӧдам. Корсян куимпельӧсаыс лӧсьӧдӧма.


Сідзкӧ, куимпельӧсасӧ позьӧ лӧсьӧдны куим дор сертиыс. Та вӧсна, сетӧма кӧ кык кытшвизьлысь шӧрчутъясыс да радиусъясыс, Фудзиталӧн медводдза вит аксиомаӧн вӧдитчӧмӧн позьӧ налысь вомӧнасян чутъяссӧ корсьны. Таысь кындзи, ми вермам индӧм кытшвизьлысь да веськыд визьлысь вомӧнасянін корсьны да кык чут пыр веськыд визь нуӧдны. Мӧд ног кӧ шуны, позьӧ артмӧдны ставсӧ, мый вӧчӧны циркульӧн да линейкаӧн отсӧгӧн (кытшвизьяс гижталӧмысь кындзи).

понедельник, 15 июня 2020 г.

Мый позьӧ артмӧдны Фудзиталӧн медводдза вит аксиомаӧн вӧдитчӧмӧн – 1

  • бур унапельӧса – правильный многоугольник
  • вундӧг – отрезок
  • кытшвизь – окружность
  • веськыдпельӧса куимсэрӧг – прямоугольный треугольник

Ми висьталім нин: Фудзиталӧн медводдза нёль аксиомаӧн вӧдитчӧмӧн позьӧ артмӧдны бур куим-, нёль-, вит-, квайт- да кӧкъямыспельӧса, пропорциялы вундӧг корсьны. Таысь кындзи, позьӧ артмӧдны куимпельӧса, сетӧма кӧ сылысь кык дор да на костса пельӧс, либӧ ӧти дор да сы бердса кык пельӧс.

Ӧні петкӧдлам, мый миянлы сетас витӧд аксиомаыс. Медводз казьтыштам да гӧгӧрвоӧдам сійӧс.

Сетӧма A да B чутъяс да k веськыд визь. Витӧд аксиома серти, кабаласӧ позьӧ кусыньтны сідзи, медым A чутыс k визяс веськаліс (серпас вылас сійӧ веськалӧ C чутӧ), а кусыньтанін B чут пыр муніс. Кусыньтанін лоӧ AC вундӧглы шӧр перпендикуляр, та вӧсна AB = BC.


B шӧрчута да AB радиуса кытшвизьсӧ пасъям w-ӧн. Миян артмӧ: C чутыс лоӧ k веськыд визь да w кытшвизь вомӧнасянін.


Дерт, витӧд аксиомасӧ колӧ стӧчмӧдны: колана кусыньтӧм эм сӧмын сэк, кор веськыд визьыс вомӧнасьӧ кытшвизьыскӧд; веськыд визьыс кӧ кытшвизьыскӧд вомӧнасьӧ кык чутын, кабаласӧ кык ногӧн позьӧ кусыньтны.

Сідзкӧ, витӧд аксиомаӧн вӧдитчӧмӧн позьӧ корсьны индӧм кытшвизьлысь да веськыд визьлысь вомӧнасян чутсӧ. Та вӧсна веськыдпельӧса куимсэрӧгсӧ сетӧм катет да гипотенуза серти лӧсьӧдны абу сьӧкыд. Петкӧдлам, кыдзи вӧчны сійӧс. Мед a – катет кузьта вундӧг, c – гипотенуза кузьта вундӧг.

1. c вундӧглысь ӧти помсӧ a помӧ пуктам (2-ӧд аксиома серти).

2. a вундӧглӧн мӧд пом пырыс h перпендикуляр нуӧдам (4-ӧд аксиома серти).


3. кабаласӧ кусыньтам сідзи, медым A чут h-ӧ веськаліс да кусыньтанін B чут пыр муніс (5-ӧд аксиома серти); серпас вылас A чут C чутӧ веськалӧ. Сэсся B да C чутъяс пыр веськыд визь нуӧдам. KBC – колана куимсэрӧгыс.


Подув да боквыв дор сертиыс пӧшти сэтшӧм жӧ ногӧн артмӧдӧны и ӧткодь берда куимпельӧса. Сідзкӧ, вит аксиомаӧн вӧдитчӧмӧн ӧткодь доръяса куимпельӧса позьӧ вӧчны Пифагор теоремасӧ казьтывтӧг.


суббота, 6 июня 2020 г.

Мый нӧшта позьӧ артмӧдны Фудзиталӧн медводдза нёль аксиомаӧн вӧдитчӧмӧн?

  • ӧткодь доръяса куимпельӧса – равносторонний треугольник
  • бур унапельӧса – правильный многоугольник
  • вундӧг – отрезок

Ӧнтай ми оригами ногӧн артмӧдлім квадрат да ӧткодь доръяса куимпельӧса. Колӧ пасйыны: вӧдитчим ми сӧмын Фудзиталӧн медводдза нёль аксиомаӧн. (Витӧд аксиома йылысь коркӧ мӧдысь висьтала на. Сы отсӧгӧн бур куимпельӧса вӧчны кокньыдджык.)

Лӧсьӧдім кӧ квадрат да ӧткодь доръяса куимпельӧса – та бӧрын бур квайтпельӧса да бур кӧкъямыспельӧса артмӧдны абу нин сьӧкыд.

Дай бур витпельӧса тшӧтш позьӧ лӧсьӧдны куш нёль аксиоманас вӧдитчӧмӧн.


Тайӧ этша на. Нёль аксиома кежысь позьӧ оз сӧмын бур унапельӧсаяссӧ артмӧдны, а и пропорциялы вундӧг корсьны. Петкӧдлам, кыдзи вӧчны тайӧс.

Тшӧтшкӧс вылын куим вундӧг гижтӧма: a, b, c. Колӧ артмӧдны нёльӧд вундӧг (пасъям сійӧс x-ӧн), медым a : b = c : x.


1. Кабаласӧ кусыньтӧмӧн артмӧдам кутшӧмкӧ пельӧс (серпасас сійӧ сьӧд рӧмӧн гижтӧма). 


Пельӧс йылас пуктам a, b да c-лысь ӧти помнысӧ (тайӧс позьӧ вӧчны кабала кусыньтӧмӧн жӧ, 2-ӧд аксиома серти). Артмасны a’ = a, b’ = b, c’ = c вундӧгъяс.


2. a’ да b’ вундӧгъяссӧ ӧти пельӧс дор вылӧ пуктам, c’ вундӧгсӧ – мӧд дор вылас (3-ӧд аксиома серти).


Артмӧ: OA = a, OB = b, OC = c.

3. A да C чутъяс пыр веськыд визь нуӧдам (1-ӧд аксиома серти). Сэсся B чут пыр AC-лы перпендикуляр гижтам (4-ӧд аксиома серти). Пасъям сійӧс k-ӧн. Сы бӧрын B чут пыр k-лы перпендикуляр нуӧдам (пасъям сійӧс m-ӧн). Миян артмӧ: m да AC – параллель нога визьяс.


OC да m вомӧнасьӧны D чутын. Фалес теорема серти, OA : OB = OC : OD, либӧ a : b = c : OD.

Со корсянторыс и сюрӧма.

пятница, 5 июня 2020 г.

Кыдзи оригами ногӧн ӧткодь доръяса куимпельӧса артмӧдны?


  • ӧткодь доръяса куимпельӧса – равносторонний треугольник
  • вундӧг – отрезок
  • квадрат вуж – квадратный корень

Ӧнтай квадрат лӧсьӧдігӧн параллель ногӧн гижтылім кык веськыд визь да налы перпендикуляр, а сэсся юклім ӧти веськыд пельӧссӧ биссектрисаӧн.



Пифагор теоремаысь петӧ: AC вундӧгыс AB вундӧг серти √2 пӧв ыджыдджык (√2 — кыклӧн квадрат вуж).

Сэсся со мый вӧчам.

1. AC визьсӧ a визь вылӧ пуктам (тайӧс позьӧ вӧчны Фудзиталӧн 3-ӧд аксиома серти); C чутлысь веськаланінсӧ пасъям K-ӧн.



Сідзкӧ, AK вундӧгыс AB вундӧг серти √2 пӧв ыджыдджык.

2. K чут пыр нуӧдам a-лы перпендикуляр. Сійӧ вомӧнасяс c-кӧд ӧти чутын; пасъям сійӧс L-ӧн. Сэсся A да L чутъяс пыр нуӧдам веськыд визь (тайӧс позьӧ вӧчны Фудзиталӧн 1-ӧд аксиома серти).



Пифагор теорема серти, AL вундӧгыс AB вундӧг серти √3 пӧв ыджыдджык.

3. AL визьсӧ a визь вылӧ пуктам; L чутлысь веськаланінсӧ пасъям M-ӧн. Сэсся M да B чутъяс пыр нуӧдам веськыд визь.



AM вундӧгыс AB вундӧг серти √3 пӧв ыджыдджык. Пифагор теоремаысь петӧ: BM = 2AB.

4. Кусыньтам кабаласӧ a визьті; B чутлысь веськаланінсӧ пасъям N-ӧн.



MAB да MAN куимпельӧсаяс ӧткодьӧсь, та вӧсна BN = BM = MN = 2AB.

Сідзкӧ, BMN – ӧткодь доръяса куимпельӧса.