- минуса лыд — отрицательное число
- плюса лыд — положительное число
- минустӧм лыд — неотрицательное число
- квадрат вуж — квадратный корень
- куб вуж — кубический корень
- лыдмӧдны — умножить
- лыдмӧдас — произведение
- куб ӧткодьлун — кубическое уравнение
- куб ӧткодьлунлӧн вуж — корень кубического уравнения
Минуса лыдысь квадрат вуж перйыны оз позь.
Школаын ми велӧдлім: "минуссӧ" кӧ "минус" пӧв босьтам, лоас "плюс" (лыдмӧдам кӧ кык минуса лыд, артмас плюса лыд). Лыдмӧдам кӧ кык плюса лыд, бара артмас плюса лыд. Та вӧсна быд лыдлӧн квадрат лоас минустӧм: a лыд кӧ плюса, артмас
a² = a⋅a > 0,
(−a)² = (−a)⋅(−a) = a⋅a > 0,
0² = 0⋅0 = 0.
Сідзкӧ, минуса лыдысь квадрат вуж перйыны оз позь.
...Вайӧй жӧ перъям да выль лыдъяс артмӧдам!
Вӧлӧмкӧ, 16-ӧд нэмсянь математикъяс вӧдитчӧны татшӧм "абутӧм" вужъяснас. (Казьтыштам: 19-ӧд нэмӧдз весиг минуса лыдъяссӧ чайтӧмаӧсь "ылӧдчанаӧн", "лӧсявтӧмӧн".)
Медводз минуса лыдысь квадрат вуж йылысь гижӧма италияса математик Джероламо Кардано "Ыджыд кужӧг" трактатын (Ars magna, 1545). Сійӧ со кутшӧм задача видлалӧма: колӧ корсьны кык лыд, медым налӧн суммаыс вӧлі 10, а лыдмӧдасыс вӧлі 40. Арталӧма да со кутшӧм лыдъяс артмӧдӧма: 5 + √(−15) да 5 − √(−15). На йылысь Кардано пасйӧма: "Тайӧ дзуг ыдждаясыс ковтӧмӧсь, кӧть и зэв аслыспӧлӧсӧсь". Сэсся лыдмӧдӧма найӧс да артмӧдӧма 25 − (−15) = 25 + 15 = 40.
Сёрӧнджык
Кардано бара татшӧм лыдъясӧ "зурасьӧма". Сійӧ лӧсьӧдӧма куб
ӧткодьлунлысь вужъяс корсян формула. Артмӧма тадз: ӧткодьлуныслӧн кӧ эм
куим вуж, формулаас эм минуса лыдысь квадрат вуж. Мый водзӧ вӧчны тайӧ
формуланас, Кардано эз тӧд.
Италияса мӧд математик, Рафаэль Бомбелли,
1572-ӧд воын индӧма, кыдзи содтавны, чинтавны, лыдмӧдавны да юклыны
татшӧм аслыспӧлӧс лыдъяссӧ. Шуам, содталӧны да чинталӧны найӧс тадзи:
a + b√(−1) + c + d√(−1) = (a + c) + (b + d)√(−1),
a + b√(−1) − [c + d√(−1)] = (a − c) + (b − d)√(−1).
А лыдмӧдӧны скобкаяс восьтӧмӧн, кыдзи алгебра урокъяс вылын ми велӧдлім:
[a + b√(−1)]⋅[c + d√(−1)] =
ac + cb√(−1) + ad√(−1) + bd√(−1)⋅√(−1) =
ac − bd + (cb + ad)√(−1).
Бомбелли видлалӧма со кутшӧм ӧткодьлун:
x³ = 15x + 4.
Сылӧн ӧти вужйыс лоӧ 4:
4³ = 64, 15⋅4 + 4 = 64.
Карданолӧн формулаяс серти, медым корсьны вужсӧ, колӧ содтыны кык лыд: ӧтиыс лоӧ 2 + 11√(−1)-ысь куб вуж, а мӧдыс лоӧ 2 − 11√(−1)-ысь куб вуж. Бомбелли гӧгӧрвоӧма: тайӧ куб вужъясыс лоӧны 2 + √(−1) да 2 − √(−1). Арталам индӧм правилӧ серти:
(2 + √(−1))³ = (2 + √(−1))(2 + √(−1))(2 + √(−1)) =
(3 + 4√(−1))(2 + √(−1)) = 2 + 11√(−1),
(2 − √(−1))³ = (2 − √(−1))(2 − √(−1))(2 − √(−1)) =
(3 − 4√(−1))(2 − √(−1)) = 2 − 11√(−1).
Содтам кӧ 2 + √(−1) да 2 − √(−1), буретш 4 и артмас.
Ачыс Бомбелли, Кардано моз, чайтӧма √(−1)-а лыдъяссӧ ковтӧмӧн. Налӧн пӧльза йылысь пасйӧма Альбер Жирар (1595−1632), прансуз математик; сӧмын сылысь мӧвпъяссӧ дыр на пыдди эз пуктыны.
Ина, интӧм да комплекс лыдъяс.
Анри Декарт пондӧма a + b√(−1) лыдъяссӧ шуны интӧмӧн (рочӧн кӧ, мнимые; англичан кывйӧн — imaginary). Сёрӧнджык терминология вежсьӧма:
a + b√(−1) лыдсӧ ӧні шуӧны комплекс лыдӧн;
a лыдсӧ шуӧны ина лыдӧн (вещественное число);
b√(−1) лыдсӧ шуӧны интӧм лыдӧн (мнимое число).
Леонард Эйлер пондӧма пасъявны √(−1) лыдсӧ i шыпасӧн; i лыд шусьӧ "интӧм ӧтик" (мнимая единица). Ӧні a + b√(−1) пыдди гижӧны a + bi.
(водзӧ лоӧ на...)