- вундӧг — отрезок
- лӧсялысь вундӧгъяс — совпадающие отрезки
- паныдсянь подулавны — доказать от противного
- ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс — внутренние накрест лежащие углы
- ӧткодьтӧмлун — неравенство
- кыв вожалӧм — противоречие
Гижам Штейнер−Лемуслӧн теоремалы мӧд подулалӧмсӧ. Сійӧс вӧзйӧма Д. О. Шкляркӧйлӧн кружокын велӧдчысь Лидия Копейкина 1939-ӧд воын (сэсся сійӧ лоӧма мехматса доцентӧн).
ABC куимпельӧсаын BM да CN биссектрисаяс ӧткузяӧсь. Гижтам M да N чутъяс пыр BC‐лы параллельяс; найӧ вомӧнасясны AB да AC‐кӧд P да Q чутъясын.
MP да NQ вундӧгъяс кӧ лӧсяласны, позяс нин аддзыны: ∠ABC = ∠ACB.
Ӧні подулалам паныдсянь, мый MP да NQ лӧсялӧны. Мед, шуам, PM визь куйлӧ NQ да BC визьяс костын.
Ми аддзам: ∠PMB = ∠MBC (найӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс да). BM — биссектриса, та вӧсна ∠MBC = ∠PBM. Сідзкӧ ∠PMB = ∠PBM, кытысь артмӧ: PB = PM. Татшӧм жӧ ногӧн позьӧ подулавны, мый QC = QN.
Миян артмисны ӧткодь берда куимпельӧсаяс: ∆BPM да ∆CQN; налӧн подувъясыс (BM да CN) ӧткузяӧсь. PM куйлӧ NQ да BC костын, та понда PM > NQ. Сідзкӧ ∠PBM > ∠QCN. Казьтыштам, мый BM да CN — биссектрисаяс, да аддзам: ∠ABC > ∠ACB.
Ӧні видлалам BPMC трапециясӧ. ∠PBC > ∠MCB ӧткодьтӧмлунысь артмӧ: PB < MC. Сідзкӧ
PB < MC < QC = NQ < PM = PB,
либӧ PB < PB. Тайӧ кыв вожалӧм.
Комментариев нет:
Отправить комментарий